
UIVerify - a Web-Based Tool for Verification and Automatic 
Generation of User Interfaces 

 
Smadar Shiffman 

NASA Ames Research Center/QSS 
Moffett Field, CA 94305 

shiffman@email.arc.nasa.gov

Asaf Degani 
NASA Ames research Center 

Moffett Field, CA 94305 
adegani@mail.arc.nasa.gov

Michael Heymann 
Department of Computer Science 

Israel Institute of Technology 
heymann@cs.technion.ac.i

 

ABSTRACT 
In this poster, we describe a web-based tool for verification 
and automatic generation of user interfaces. The verification 
component of the tool accepts as input a model of a machine 
and a model of its interface, and checks that the interface is 
adequate (correct). The generation component of the tool 
accepts a model of a given machine and the user’s task, and 
then generates a correct and succinct interface. This write-up 
will demonstrate the usefulness of the tool by verifying the 
correctness of a user interface to a flight-control system. The 
poster will include two more examples of using the tool: 
verification of the interface to an espresso machine, and 
automatic generation of a succinct interface to a large 
hypothetical machine. 
 

Keywords 
Formal methods, verification, interface design, interface 
analysis, automation, autopilot, flight control systems 
 
INTRODUCTION 

Computers and automated devices play a pivotal role in our 
modern society. Almost every technological system is driven 
by computers; efficient user interaction is a key element for 
making these systems efficient and, in the case of high-risk 
systems such as aircrafts, also safe. One of the factors 
frequently cited in aviation incident and accident reports as 
being responsible for faulty system operation is the fact that 
the interface between the user and the machine is inadequate, 
and at times misleading [1]. The problem, however, is not 
only unique to aviation—it can also be found in many other 
human-machine systems, from household devices to consumer 
electronics, automotive, and medical systems [2]. The 
difficulty in designing adequate interfaces is only bound to 
grow in the future, as computer systems are becoming more 
sophisticated and complex.   
For an interface to be adequate, it must first and foremost be 
correct, so that the user always knows the current 
configuration of the machine (e.g. mode) and can predict the 
next mode.  In addition, we strive for interfaces that are 
succinct, so that they do not overload the user with 
superfluous information. In this poster, we describe 
UIVerify—a web-based tool that allows designers of 
computer-based systems to analyze user interfaces. UIVerify 
includes a component for verifying the correctness of an 

interface, and a component for generating correct and succinct 
interfaces. The methodologies behind the tools are based on 
published work on verification and generation of user 
interfaces [3, 4]. 

 
VERIFICATION OF INTERFACES  

Formal verification of user interfaces entails checking whether 
the user can interact with the underlying machine correctly 
and reliably in order to achieve a specified set of tasks.  The 
verification process detects three types of user-interface 
inadequacies that are based on the criteria set by Degani and 
Heymann [4]. The first inadequacy—the existence of error 
states—occurs when the user interface indicates that the 
machine is in one mode, when in fact the machine is in 
another. Interfaces with error states lead to faulty interaction 
and operational errors. The second inadequacy—the existence 
of restricting states—occurs when the user is unaware that 
certain user interactions can trigger additional mode changes 
in the machine. Interfaces with restricting states tend to 
surprise and confuse users. The third inadequacy—the 
existence of augmenting states—occurs when the user is told 
that a certain mode is available, when in fact the machine does 
not have this mode, or access to certain modes is disabled. 
Interfaces with augmenting states puzzle users and have 
contributed to operational errors. 
 
At the heart of the interface design problem lies the fact that in 
any human-machine system, two concurrent processes are at 
constantly at play: the machine and its (internal) behavior, and 
the information provided to the user (about the behavior of the 
underlying machine) via the interface.  Every interface is an 
abstraction, or simplification, of the underlying machine 
behavior [3]. The objective of the verification process is to 
systematically and comprehensively validate that the 
abstracted interface is correct.  One way to view how the 
verification process detects user-interface inadequacies is by 
constructing a composite model that incorporates  the 
underlying behavior of the machine (machine model) and the 
user-interface information (user model). In this composition, 
called the composite model, we combine corresponding user-
interface states and machine states into state-pairs. Next, the 
verification process simulates an activation of the composite 
model, where the user-interface model and the machine model 
evolve concurrently in a synchronized manner. If the process 
cannot detect instances of error states, restricting states, or 

Proceedings of the 8th Annual Applied Ergonomics Conference. New Orleans, LA, 2005.

mailto:shiffman@email.arc.nasa.gov
mailto:adegani@mail.arc.nasa.gov


augmenting states, the user-interface model, according to 
these three verification criteria, is considered correct. 
 

GENERATION OF INTERFACES  

A second component of UIVerify is a tool for automatic 
generation of interfaces.  For a given machine (and 
description of the user’s task), the tool generates the simplest 
(e.g., minimal) interface possible.  The idea is to provide the 
user with a correct interface that does not include any 
superfluous information; in other words, the objective is to de-
clutter the display as much as possible. The interface 
generation methodology incorporates a variant of a reduction 
algorithm [5] to produce an abstraction of the machine’s 
model that included only the details that are necessary for 
correct user interaction [3, 4, 6].  

 
THE UIVerify WEB-BASED TOOL 

UIVerify includes both the verification and generation 
components, and comprises a backend, which runs the 
verification and generation processes, and a front end, which 
communicates with the analyst using a web browser. The 
verification and generation packages are coded in GNU C++. 
Through the browser, the user of the system (which we will 
call from here on the analyst), inputs the machine model, the 
user model, and the correspondence between these two 
models.  The analyst inputs the models by uploading the 
description from a text file or by manually typing the model 
description into a form. The tool displays each loaded model, 
both in textual form and in graph form, for analyst 
confirmation. The tool generates the graph form of the models 
with GraphViz [7, 8]. Upon the analyst’s request, Java™ 
servlets activate the verification and generation processes 
through Java™ system calls. The servlets are synchronized to 
allow for correct simultaneous activation of the tool via 
multiple client browsers. The results are displayed within the 
web browser. The front-end pages are served from a SUN™ 
workstation using an Apache web server. 
 

USING THE TOOL 

The poster will demonstrate how to work with UIVerify by 
showing three examples. The first example shows how the 
tool detects an error state in the interface to an espresso 
machine. The second example shows how the tool detects an 
error state in a flight-control system. The third example shows 
how the tool generates a simplified interface for a large 
hypothetical machine model. Here, in this description, we 
only show the process of inputting the data (models) of the 
flight control system and the results of the verification as 
conducted by the tool.  
 

Machine Model 
Figure 1 shows the behavior of the automatic flight control 
system (machine model). It is a finite state machine 
description of how the autopilot works.  There are several 
states/modes (e.g., CAPTURE, VERTICAL SPEED) and transitions 
in-between (e.g., engage change level). The analyst enters the 
model in Figure 1 into the tool as a set of fragments, or tuples, 
which include the BEGINNING STATE, transition, and END 
STATE.  For example, the tuple: CAPTURE, set altitude ahead of 
capture start, and VERTICAL SPEED (to altitude setting) is one 
fragment.  For the model in Figure 1, there are 18 such tuples 
that account for all the states and transitions in the model. In 
addition, the analyst also indicates the specification class for 
each state. For example, the specification class for the state 
VERTICAL SPEED (to altitude setting) is ARMED FOR CAPTURE. 
Figure 2 shows the confirmation screen for all the inputs that 
were entered by the analyst.  
 

vertical speed
(to altitude setting)

hold altitude
(vertical speed armed)

hold altitude

vertical speed
(unconstrained)

change level
(to altitude setting)

engage
change-level

engage
vertical speed

engage change-level

move vertical speed wheel
toward set altitude

move vertical speed wheel
away from set altitude

[near set altitude]

[near set altitude]

[altitude = set altitude]

capture

Figure 1 Machine model of automatic flight control. The symbol indicates
the event ‘set altitude ahead of current aircraft altitude‘; the symbol indi-
cates ‘set altitude ahead of capture start’; the symbol indicates ‘set altitude
behind current aircraft altitude‘; the symbol indicates ‘set altitude behind
capture start.’

 

User Model 
Figure 3 is the user model.  It shows the information provided 
to the pilot about the system (through the interface and in the 
flight manual). The analyst enters the user model description 
as tuples (in the same way as the machine model). The 
interface (and hence also the user model) is an abstracted 
description of the underlying machine model.  As can be seen 
in Figure 3, the user model is simplified in the sense that all 
altitude-setting events are related to the current aircraft 
altitude (e.g., the transition from CAPTURE to VERTICAL SPEED 
(unconstrained)). In the machine model, however, the 
description is more refined such that it also includes the 
subtlety of ‘setting altitude to ahead/behind capture start.’



Figure 2 The input- confirmation screen for the machine model  

CHANGE LEVEL
(to altitude setting)

CAPTURE

HOLD ALTITUDE
(vertical speed armed)

hold altitude

engage
change-level

engage
vertical speed

engage change-level

move vertical speed wheel
toward set altitude

move vertical speed wheel
away from set altitude

[near set altitude]

[near set altitude]

[altitude = set altitude]

HOLD ALTITUDE

VERTICAL SPEED
(unconstrained)

VERTICAL SPEED
(to altitude setting)

Figure 3 User model of automatic flight control. The symbol indicates the
event ‘set altitude ahead of current aircraft altitude’; the symbol indicates
‘set altitude behind current aircraft altitude.’

 
Event Correspondence 
By now we have entered both the machine model and then the 
user model into the tool.  The third step is to enter the 
correspondence between the events in the machine model vs. 
the events in the user model.  The correspondence between 
machine-model events to user-model events is shown in Table 
1. We can see that the events set altitude behind capture start 
and set altitude ahead of capture start are simplified in the 
user model.  Figure 4 shows the confirmation screen for the 
event mapping.  
 

Machine-model events

• move vertical speed wheel toward
set altitude

• move vertical speed wheel away
from set altitude

• engage change level
• engage vertical speed
• near set altitude
• altitude equals set altitude
• set altitude ahead of current aircraft

altitude
• set altitude behind current aircraft

altitude
• set altitude behind capture

start
• set altitude ahead of capture

start
• set altitude ahead of capture

start

User-model events

• move vertical speed wheel toward
set altitude

• move vertical speed wheel away
from set altitude

• engage change level
• engage vertical speed
• near set altitude
• altitude equals set altitude
• set altitude ahead of current aircraft

altitude
• set altitude behind current aircraft

altitude
• set altitude behind current aircraft

altitude
• set altitude behind current aircraft

altitude
• set altitude ahead of current aircraft

altitude

Table 1 Correspondence of machine-model events with user-model events

 

 

Figure 4 The confirmation screen for the correspondence between
machine-model and user-model events.

 
At this point, the tool is ready to verify the interface. The 
computation time for a model with 19 states takes about 1 
second and the results show that UIVerify detects an error 
state between machine-model state VERTICAL SPEED (to 
altitude setting) and user-model-state VERTICAL SPEED 
(unconstrained) (see Figure 5).   

To visualize and better understand this error state inadequacy 
that was detected by the tool, let’s take the machine model, 
the user model, and build a composite model (Figure 6).  
Figure 6(a) is a portion of the machine model, showing the 
consequences of changing the altitude while in capture mode.  
Figure 6(b) is a portion of the user model, also showing the 
consequences of changing altitude while in capture mode.  
(Recall that the simplification in the user model was 
performed on the events leading out of the capture mode).  
Now look at the composite model of Figure 6 (c): For 
changing the altitude to above the current aircraft altitude, the 
simplification works just fine.  But for changing the altitude to 
below the current aircraft altitude, the simplification creates 
an error state:  Based on this display and knowledge, the pilot 
assumes that the aircraft will always go into unconstrained 
climb, when in fact, it may sometimes capture the altitude.  
This discrepancy will always happen when the new altitude 
setting is below the capture start. Naturally, if the pilot cannot 
discriminate whether the airplane will continued to climb 
indefinitely in vertical speed (unconstrained), or go into 
vertical speed (to altitude setting) and then capture the newly 
set altitude—the interface is indeed incorrect [9]. 
 

RELATED RESEARCH AND CONCLUSIONS 

Several researchers demonstrated how formal methods can be 
used for analyzing user interfaces and identifying design 
deficiencies [10-12].  Rushby, et al., use model checking 
techniques to perform an iterative search for inconsistencies 
within a combined rule-based representation of machine and  



Figure 5 Verification results for flight-control example
 

vertical speed
(to altitude setting)

VERTICAL SPEED
(unconstrained)

ERROR STATE

VERTICAL SPEED
(to altitude setting)

vertical speed
(to altitude setting)

VERTICAL SPEED
(unconstrained)
vertical speed

(unconstrained)

capture

CAPTURE

[near set altitude]

vertical speed
(to altitude setting)

vertical speed
(unconstrained)

[near set altitude]

capture

CAPTURE

[near set altitude]

VERTICAL SPEED
(unconstrained)

VERTICAL SPEED
(to altitude setting)

Figure 6 Creating a composite model: (a) machine model, (b) user model, and
(c) composite model.

(c)

(a)

(b)

 
 
user models, and allow alteration of either the machine or the 
user model in-between iterations. The Degani and Heymann 
method, which is the approach and methodology behind 
UIVerify, employs the use of separate descriptions for the 
machine and the interface, focuses on the synchronization 
between the two concurrent models, and provides criteria 
(error state, restricting state, augmenting states) for 
verification. The UIVerify tool is applicable for user 
interfaces that have many discrete modes.  As for control 
systems, where it is important to also take into account 
continuous variables (such as time, speed, flight path angle, 
etc.), it is possible in most cases to use the methods described 

in [13] so as to convert the (hybrid) system into a finite state 
machine representation and then use UIVerify to perform the 
verification. As for automatically generating correct and 
succinct interfaces, the method of Heymann and Degani and 
its implementation in UIVerify is unique in its capability to 
determine the simplest interface possible.  The UIVerify tool, 
which is currently in a proof of concept phase, is available for 
use at http://uiverify.arc.nasa.gov. 
 
 
REFERENCES   

1. Leveson, N.G. and Palmer, E., Designing automation to reduce 
operator errors. In Proceedings of the IEEE International 
Conference on Systems, Man, and Cybernetics, Orlando, FL. 
October, 1997.  

2. Degani, A., (2004). Taming HAL, Designing Interfaces Beyond 
2001. Palgrave Macmillan, New York. 

3. Degani, A. and Heymann, M., (2002). Formal verification of 
human-automation interaction. Human Factors, Vol. 44.1, pp 28-
43.  

4. Heymann, M. and Degani, A., (2002). On abstractions and 
simplifications in the design of human-automation interfaces. 
NASA Technical Memorandum 2002-21397, Mofett Field, CA. 

5. Paull, M.C. and Unger, S.H. (1959).  Minimizing the number of 
states in incompletely specified sequential switching functions.  
Institute of Radio Engineers-- Transactions on Electronic 
Computers, 1959, pp. 356-367. 

6. Degani, A. and Heymann, M., Meyer, G., and Shafto, M., (2002). 
Some formal aspects of human-automation interaction.  NASA 
Technical Memorandum 2000-209600, Mofett Field, CA. 

7. North, S.C. and Koutsofios, E., Application of Graph 
Visualization, in Proceedings of Graphics Interface, Banff, 
Alberta, Canada, 1994, pp. 235-245. 

8.Gansner, E.R. and North, S.C., An open graph visualization system 
and its applications to software engineering. Software - Practice 
and Experience (SPE), Vol. 30.11, 2000, pp. 1203-1233.  

9. Degani, A., Heymann, M., (2000). Pilot-autopilot interaction: A 
formal perspective. In Abbott, K., Speyer, J.J., Boy, G., eds.: 
Proceedings of the International Conference on Human-Computer 
Interaction in Aeronautics: HCI-Aero 2000, Toulouse, France, pp. 
157-168. 

10. Palanque, P. and Bastide, R., (1994). Petri-net based design of 
user-driven interfaces using the interactive cooperative objects 
formalism, in Proceedings of Design, Specification and 
Verification of Interactive Systems, Springer Verlag, pp. 383-400.

11. Rushby, J., Using model checking to help discover mode 
confusions and other automation surprises, in Proceedings of the 
Workshop on Human Error, Safety, and System Development 
(HESSD), Li`ege, Belgium, 1999. 

12. Doherty, G., Campos, J. C. and Harrison, M.D., Representational 
reasoning and verification, Formal Aspects of Computing, No. 3, 
2000, pp. 1-23.

13. Oishi M., Tomlin, C. and Degani, A. (2003). Discrete abstraction 
of hybrid systems: verification of safety and application to user-
interfaces. NASA Technical Memorandum 2003-212803, Mofett 
Field, CA. 

 

http://www.informatik.uni-trier.de/%7eley/db/indices/a-tree/g/Gansner:Emden_R=.html
http://www.informatik.uni-trier.de/%7eley/db/indices/a-tree/n/North:Stephen_C=.html
http://www.informatik.uni-trier.de/%7eley/db/journals/spe/index.html
http://www.informatik.uni-trier.de/%7eley/db/journals/spe/index.html

	ABSTRACT
	Keywords



